首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25010篇
  免费   213篇
  国内免费   924篇
测绘学   1426篇
大气科学   2027篇
地球物理   4678篇
地质学   11812篇
海洋学   1092篇
天文学   1712篇
综合类   2162篇
自然地理   1238篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   17篇
  2020年   13篇
  2019年   15篇
  2018年   4776篇
  2017年   4059篇
  2016年   2612篇
  2015年   265篇
  2014年   105篇
  2013年   78篇
  2012年   1029篇
  2011年   2767篇
  2010年   2049篇
  2009年   2349篇
  2008年   1922篇
  2007年   2393篇
  2006年   74篇
  2005年   219篇
  2004年   418篇
  2003年   430篇
  2002年   266篇
  2001年   63篇
  2000年   58篇
  1999年   21篇
  1998年   36篇
  1997年   7篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1981年   22篇
  1980年   21篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   8篇
  1975年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 282 毫秒
991.
In mountainous areas, channelized rock avalanches swarm downslope leading to large impact forces on building structures in residential areas. Arrays of rock avalanche baffles are usually installed in front of rigid barriers to attenuate the flow energy of rock avalanches. However, previous studies have not sufficiently addressed the mechanisms of interaction between the rock avalanches and baffles. In addition, empirical design approaches such as debris flow (Tang et al., Quat Int 250:63–73, 2012), rockfall (Spang and Rautenstrauch, 1237–1243, 1988), snow avalanches (Favier et al., 14:3–15, 2012), and rock avalanches (Manzella and Labiouse, Landslides 10:23–36, 2013), which are applied in natural geo-disasters mitigation cannot met construction requirements. This study presents details of numerical modeling using the discrete element method (DEM) to investigate the effect of the configuration of baffles (number and spacing of baffle columns and rows) on the impact force that rock avalanches exert on baffles. The numerical modeling is firstly conducted to provide insights into the flow interaction between rock avalanches and an array of baffles. Then, a modeling analysis is made to investigate the change pattern of the impact force with respect to baffle configurations. The results demonstrate that three crucial influencing factors (baffle row numbers, baffle column spacing, and baffle row spacing) have close relationship with energy dissipation of baffles. Interestingly, it is found that capacity of energy dissipation of baffles increases with increasing baffle row numbers and baffle row spacing, while it decreases with increasing baffle column spacing. The results obtained from this study are useful for facilitating design of baffles against rock avalanches.  相似文献   
992.
993.
The automatic detection of landslides after major events is a crucial issue for public agencies to support disaster response. Pixel-based approaches (PBAs) are widely used in the literature for various applications. However, the accuracy of PBAs in the case of automatic landslide mapping (ALM) is affected by several issues. In this study, we investigated the sensitivity of ALM using PBA through digital terrain models (DTMs). The analysis, carried out in a study area of Poland, consisted of the following steps: (1) testing the influence of selected DTM resolutions for ALM, (2) assessing the relevance of diverse landslide morphological indicators for ALM, and (3) assessing the sensitivity to landslide features for a selected size of moving window (kernel) calculations for ALM. Ultimately, we assessed the performance of three classification methods: maximum likelihood (ML), feed-forward neural network (FFNN), and support vector machine (SVM). This broad analysis, as combination of grid cell resolution, surface derivatives calculation, and performance classification methods, is the challenging aspect of the research. The results of almost 500 experimental tests provide valuable guidelines for experts performing ALM. The most important findings indicate that feature sensitivity in the case of kernel size increases with coarser DTM resolution; however, the peak of the optimal feature performance for the selected study area and landslide type was demonstrated for a resolution of 20 m. Another finding indicated that in combining a set of topographic variables, the optimal performance was acquired for a DTM resolution of 30 m and the support vector machine classification. Moreover, the best performance of the identification is represented for SVM classification.  相似文献   
994.
We performed seismic waveform inversions and numerical landslide simulations of deep-seated landslides in Japan to understand the dynamic evolution of friction of the landslides. By comparing the forces obtained from a numerical simulation to those resolved from seismic waveform inversion, the coefficient of friction during sliding was well-constrained between 0.3 and 0.4 for landslides with volumes of 2–8 ×106 m3. We obtained similar coefficients of friction for landslides with similar scale and geology, and they are consistent with the empirical relationship between the volume and dynamic coefficient of friction obtained from the past studies. This hybrid method of the numerical simulation and seismic waveform inversion shows the possibility of reproducing or predicting the movement of a large-scale landslide. Our numerical simulation allows us to estimate the velocity distribution for each time step. The maximum velocity at the center of mass is 12–36 m/s and is proportional to the square root of the elevation change at the center of mass of the landslide body, which suggests that they can be estimated from the initial DEMs. About 20% of the total potential energy is transferred to the kinetic energy in our volume range. The combination of the seismic waveform inversion and the numerical simulation helps to obtain the well-constrained dynamic coefficients of friction and velocity distribution during sliding, which will be used in numerical models to estimate the hazard of potential landslides.  相似文献   
995.
Landslide susceptibility modelling—a crucial step towards the assessment of landslide hazard and risk—has hitherto not included the local, transient effects of previous landslides on susceptibility. In this contribution, we implement such transient effects, which we term “landslide path dependency”, for the first time. Two landslide path dependency variables are used to characterise transient effects: a variable reflecting how likely it is that an earlier landslide will have a follow-up landslide and a variable reflecting the decay of transient effects over time. These two landslide path dependency variables are considered in addition to a large set of conditioning attributes conventionally used in landslide susceptibility. Three logistic regression models were trained and tested fitted to landslide occurrence data from a multi-temporal landslide inventory: (1) a model with only conventional variables, (2) a model with conventional plus landslide path dependency variables, and (3) a model with only landslide path dependency variables. We compare the model performances, differences in the number, coefficient and significance of the selected variables, and the differences in the resulting susceptibility maps. Although the landslide path dependency variables are highly significant and have impacts on the importance of other variables, the performance of the models and the susceptibility maps do not substantially differ between conventional and conventional plus path dependent models. The path dependent landslide susceptibility model, with only two explanatory variables, has lower model performance, and differently patterned susceptibility map than the two other models. A simple landslide susceptibility model using only DEM-derived variables and landslide path dependency variables performs better than the path dependent landslide susceptibility model, and almost as well as the model with conventional plus landslide path dependency variables—while avoiding the need for hard-to-measure variables such as land use or lithology. Although the predictive power of landslide path dependency variables is lower than those of the most important conventional variables, our findings provide a clear incentive to further explore landslide path dependency effects and their potential role in landslide susceptibility modelling.  相似文献   
996.
We study the creep properties of clastic soil in residual state. The intact samples are taken from a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Firstly, the patterns of the landslide movement are analysed based on recent monitoring data, which indicate that the soil within the shear zone is undergoing two deformation processes: a creep phase, characterised by different creep rates, and a dormant phase. We then study the creep behaviour of the soil samples through a series of ring shear creep tests under various shear stress conditions. The creep response depends strongly on the ratio of the shear stress to the residual strength, and the normal effective stress, whereas the creep rate decreases due to strength regain. The long-term strength of the clastic soil is close to the residual strength. Therefore, the residual strength obtained from conventional shear test, which is less time consuming than creep test, can be used in long-term stability analyses of creeping landslides.  相似文献   
997.
Lvliang airport is a typical loess filling engineering located in 20.5 km north of Lvliang City in Shanxi Province, China. By the end of March 2012, 14 fissures extending more than 7.5 m were observed in a loess-filled slope, of which the longest fissure is up to 82 m. Field monitoring and laboratory tests have been performed to investigate the slope failure modes. The test program includes wetting tests on unsaturated compacted samples and stress path tests on saturated samples. Field monitoring and observations show that differential settlement caused by non-homogeneity in compacted loess density might lead to the formation of fissures in the loess-filled slope. It was founded that the wetting deformation contributed to the development of differential settlement. Fissures are the essential factor for the loess-filled slope failure. Four deformation stages exhibit in the loess-filled slope prior final failure including development of the fissures, softening of the compacted loess, creeping of the slope leading edge and fissuring of the trailing edge and formation of the through-sliding surface. Development of the sliding surface mainly includes upward and downward expansion of the fissures. Upward expansion is a wetting failure process in loading condition, while downward expansion is a load-off wetting process. In addition, development of the sliding surface is accelerated by softening of the compacted soils as a result of water infiltration. Therefore, the key for taking countermeasures against filling landslides is to monitor and control the development of differential settlement and fissures in the slope shoulders. Digging out and extra-filling the fissures are an effective way for preventing these landslides.  相似文献   
998.
The mean velocity of debris flow is one of the most important parameters in the design of mitigation structures and in quantitative risk analysis. This study develops a model to predict the mean debris flow velocity observed in the field by applying the incomplete similarity argument. An equation for estimating the Darcy-Weisbach resistance coefficient for debris flows with a volumetric sediment concentration larger than 0.19 is accordingly derived using 128 sets of observation data from nine Chinese gullies, in which both the effect of the volumetric sediment concentration and channel slope on resistance are considered. The derived equation is then verified and compared against five previously published equations by using 61 sets of published observation data from six gullies located in four countries. The applications of the proposed equation are discussed, and the improvements made using the proposed equation are clearly very significant when compared with the previously published equations.  相似文献   
999.
Due to the continuous and intense rainfall from June 26 to 28, 2016, Xinlu Village in Ganshui Town, Qijiang District, Chongqing, experienced a unitary-slip landslide at approximately UTC+8 19:30 on June 28. This landslide disrupted the Chuan-Qian railway and damaged four residential buildings. To analyze and rehabilitate the landslide, the engineering geology, hydrological conditions, and deformation instability mechanism of this landslide were investigated and comprehensively analyzed based on an in situ survey, geophysical drilling, and a laboratory quick-shearing test. The results show that the landslide is a typical gradual progressive landslide.  相似文献   
1000.
Establishment of ICL Italian network   总被引:1,自引:1,他引:0  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号